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where J-l is the magnetic moment of the iOIl creating 
the field and r is its radius vector relative to the 
point considered. The total field is obtained by 
summing over all the magnclic ions of the crystal. 
In calculating how thc anisotropy enc rgy varies 
with the deformation, we will use an approximate 
metllOd. Wc represent K in thc form 

(3) 

This relationship between K and the volume of 
the unit ccll (v = a2c) is tied up with the fact that 
the field duc to magnetic dipoles decreases as the 
cube of the interatomic distances [sce (2)]. The 
quantity y = (a - c) /(a + c) is a dimensionless 
parameter characterizing the extent to which the 
magnetic lattice deviates from a body-centered 
cubic lattice. The anisotropy field of the latter 
equals zero, and (3) can be considered as the first 
term in the series of an expansion of K in terms 
of y. Direct differentiation of (3) with respect to 
the relative changes in the unit cell constants along 
the different crystallographic directions gives 

1 iJK I 1 oK I 1 dK 1 oK 
K oVa e = 0.53, X oVe a= -3.6 and X dp =X iJVe S 33 

+ 1 oK S _ 3 t. 10-12 2/ 
KdV

a
I3---· l ' cm dyn. (4) 

Here 8:33 = 0.90 • 10-12 cm2/dyn and S13 = 0.36 • 10-12 

cm2/dyn are the elastic compliance constants of 
the crystal, calculated from ultrasonic wave ve
locities at low temperatures [8] and data in [9J. 
The error in this calculation is because y is not 
small. However, direct calculation of the quantity 
in (4) by summing the contributions of the sixteen 
nearest neighbors gives the same value. 

The quantity X .L (p) in the measured quantity 
can be determined from the expression 

(5) 

derived from (1) by differentiation, where the term 
on the left represents the experimental result after 
subtraction of the classical effect . Using the re la
tionship X .L ~ 1/ J 12 [1] we find 

1 dxJ._ 1 dJ 12 _ 19 10-12 2/ d' - ------ .' cm yn. 
Xl. dp J I2 dp 

This rclationship, which indicates that the bulk 
interaction betwecn the sub lattices grows when the 
crystal is uniaxially compresseci, gives only part 

of the information on the relationship between J 12 
and the interatomic distances. 

In fact the expression 

is an equation with two unlmowns. A similar equa
tion relating to Hc measurements under hydrostatic 
pressure conditions, also retaining the initial sym
metry of the crystal, can be used in conjunction 
with (6) to determ ine both quantities of interest; 
the relcvant experiments are being carried out at 
the present time. However, even now it is possible 
to compare our results with those from other ex
periments. There is qualitative agreement between 
our results and those of Gibbons [10], who observed 
marked contraction of a MnF2 crystal along the sym
metry axis during antiferromagnetic ordering , and 
also with the results obtai.ned by Astrov, Novikova, 
and Orlova [11] and by Benedek and Kushida [121, 
who observed an increase in the temperature of 
ordering (TN) with homogeneous compression. 
Quantitative agreement with the cited results should 
not be expected, since the latter include the rela
tionship between the interatomic distances and the 
sub lattice exchange integral J 11, the contribution 
of which cannot be neglected. 

Finally, if we examine the inversion of mag
netic sub lattices as a phase change of the first kind, 
we can write the equation linking the change in mag
netic field with the uniaxial pressure as a phase 
equilibrium curve [51: 

dBe _ AVe 
dP--~· (7) 

where ~Uc and ~m are respectively the jumps in 
the relative crystal deformation along the C4 axis 
and in the magnetic moment. This expression, 
which is analogous to a Clapeyron-Clausius equa
tion, allows data on critical field displacements 
with pressure to be used to calculate the corre
sponding jumps in crystal dimensions at the crit
ical point. The result L\Uc = 0.26 . 10-4 is in 
agreement with direct magnetostricti.on measure
ments on MnF2 in a strong field [131. 
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